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ABSTRACT
In the following, we introduce new proportional hazard (P.H.) processes, which are
derived by a marginal transformation applied to complementary power function dis-
tribution (CPFD) processes. Also, we introduce two new Pareto processes, which are
derived from the proportional hazard family. We discuss the distributional features
of such processes, explore inferential aspects, and include an example of applications
of the new processes to real-life data.
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1. Introduction

An important tool that will be used in constructing proportional hazard processes is a
distribution that we will call the complementary power function distribution (CPFD).
The CPFD processes are the perfect tools for developing stationary proportional haz-
ard processes, which will be of interest since an assumption of proportional hazards
is frequently deemed to be plausible in many applications. Another important specific
case of a proportional hazard family of distributions is given by the classical Pareto
distribution, which is used in the study of inequality in income distribution. In the
following sections, we discuss the distributional features of CPFD processes and the
Pareto processes, explore inferential aspects, and include an example of the application
of such processes to real-life data.
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2. Proportional reversed hazard processes

It is well known that proportional reversed hazard (PRH) processes can be viewed as
being obtained by marginal transformations applied to a particular PFD process. In
the following, we define two PFD processes introduced in Kundu [4] (called Kundu
process) and Arnold et al. [2] (called A-M process).

2.1. PFD-processes

We begin by recalling the definition of the power function distribution (PFD) and two
PFD processes introduced in Arnold et al. [2]. We say that X has a power function
distribution (PFD) with parameter α, if its distribution is of the form

FX(x) = xα, 0 < x < 1, α > 0. (1)

If X has distribution (1) then we will write X ∼ PFD(α). The corresponding density
is

fX(x) = αxα−1, 0 < x < 1, α > 0. (2)

This can be recognized as a Beta(α, 1) density. There are two special properties of
power function distributions that will be useful for defining stationary PFD processes.

(A) Closure under maximization: If X and Y are independent with X ∼
PFD(α) and Y ∼ PFD(β), then Z = max{X,Y } ∼ PFD(α+ β).

(B) Closure under raising to a power: If X ∼ PFD(α) and if δ > 0, then V =
Xδ ∼ PFD(α/δ).

The following two stationary power function distribution processes (PFD-processes)
with PFDmarginals proved to be useful for generating stationary proportional reversed
hazard processes.

(I) A Kundu PFD process: Consider an i.i.d. sequence, {Un}, of uniform(0, 1)
random variables. The PFD process {X∗

n} will be defined by

X∗
n = max

{
U1/α
n , U

1/β
n−1

}
, (3)

where α, β > 0, see Kundu [4].

(II) An A-M PFD process: Define Y ∗
0 = U

1/α
0 ∼ PF (α) and for n = 1, 2, ... define

the PFD process

Y ∗
n = max{(Y ∗

n−1)
α/(α−δ), U1/δ

n }, (4)

where δ ∈ (0, α) and the Un’s are i.i.d. uniform(0, 1) random variables, see
Arnold et al. [2].
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Now, if {Xn} is either one of the above PFD processes, we can construct a stationary
proportional reverse hazard process of the form

Yn = F−1
0 (Xn), n = 0, 1, 2, .... (5)

where F0 is an arbitrary distribution function with support (0,∞).
We refer to Arnold et al. [2] for stochastic properties, inferential aspects, and also

an example of applications of the above two new PFD processes.

3. Proportional hazard processes

An important tool that will be used in constructing proportional hazard processes is a
distribution that we will call the complementary power function distribution (CPFD).
It might also be called a power function survival distribution. The construction of
proportional hazard processes, using the CPFD will be a close parallel to that used in
developing the proportional reverse hazard processes above.

3.1. The complementary power function distribution

We say that X has a complementary power function distribution (CPFD) with pa-
rameter α, if its distribution is of the form

FX(x) = 1− (1− x)α, 0 < x < 1, α > 0, (6)

i.e., if FX(x) = (1 − x)α, 0 < x < 1. If X has distribution (6) then we will write
X ∼ CPFD(α). The corresponding density is

fX(x) = α(1− x)α−1, 0 < x < 1, α > 0. (7)

This can be recognized as a Beta(1, α) density. There are two special properties of
complementary power function distributions that will be useful for defining stationary
CPFD processes.

(C) Closure under minimization: If X and Y are independent with X ∼
CPFD(α) and Y ∼ CPFD(β), then Z = min{X,Y } ∼ CPFD(α+ β).

(D) Closure under complementary raising to a power: IfX ∼ CPFD(α) and
if δ > 0, then V = 1−(1−X)δ ∼ CPFD(α/δ). Of course, this is just a rewritten
version of statement (B) for PFD variables.

3.2. Two CPFD-processes

Note that, if U ∼ Uniform(0, 1) and X = 1− U1/α then P (X > x) = (1− x)α.

Now, analogous to the two processes defined in Section 2.1, we have the following
CPFD processes.
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(I) A Kundu CPFD process: Consider an i.i.d. sequence, {Un}, of uniform(0, 1)
random variables. The Kundu CPFD-process {V ∗

n } will be defined by

V ∗
n = min{1− U

1/α
n−1, 1− U1/β

n } (8)

where α, β > 0.
Note that V ∗

n = 1−X∗
n,∀n where {X∗

n} is the Kundu PFD process .
(II) An A-M CPFD process: We define the A-M CPFD process {W ∗

n} as follows.

Define W ∗
0 = 1− U

1/α
0 and for n = 1, 2, ... define the CPFD process

W ∗
n = min{1− (1−W ∗

n−1)
α/(α−δ), 1− U1/δ

n }, (9)

where δ ∈ (0, α) and the Un’s are i.i.d. uniform(0, 1) random variables.

Note that W ∗
n = 1− Y ∗

n ∀n where {Y ∗
n } is the A-M PFD process .

3.3. Two proportional hazard processes

The motivation for introducing complementary power function distribution processes
(which are so simply related to power function distribution processes) is that the CPFD
processes are the perfect tools for developing stationary proportional hazard processes,
which will be of interest since an assumption of proportional hazards is frequently
deemed to be plausible in many applications. A simple marginal transformation applied
to a CPFD process will be all that is required.

We can then define a Kundu PH process {S∗
n} with PH marginals using a Kundu

CPFD process {V ∗
n } as follows

S∗
n = F−1

0 (V ∗
n ), n = 0, 1, 2, .... (10)

where it can be verified that

P (S∗
n > s) = [F 0(s)]

α+β.

In parallel fashion, we can define an A-M PH process as follows

T ∗
n = F−1

0 (W ∗
n) = F−1

0 (1− Y ∗
n ) (11)

where W ∗
n is the A-M CPFD process.

We may readily verify that {T ∗
n} has proportional hazard marginal distributions as

follows:

P (T ∗
n > t) = P (F−1

0 (1− Y ∗
n ) > t) = P (1− Y ∗

n > F0(t)

= P (Y ∗
n < 1− F0(t)) = P (Y ∗

n < F0(t))

= [F0(t)]
α.
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3.4. New stationary Pareto processes

A specific case of a proportional hazard family of distributions is provided by the
classical Pareto distribution, which is much used in the study of inequality in economic
variables such as income [1]. Recall that a random variable X has a classical Pareto
distribution or Pareto(I) distribution if its survival function is of the form

FX(x) = (x/σ)−α, x > σ.

To indicate this, we write X ∼ P (I)(σ, α).

Note that if X1 ∼ P (I)(σ, α1) and X2 ∼ P (I)(σ, α2) are independent and if we
define Z = min{X1, X2} then Z ∼ P (I)(σ, α1 + α2).

Note that the family of P (I)(σ, α) distributions, for a fixed value of σ is a
proportional-hazard family with its basic survival function of the form F0(x) =
(x/σ)−1, with corresponding quantile function

F−1
0 (y) = σ(1− y)−1.

It will thus be possible to define two stationary Pareto processes as in Subsection 3.3
using this particular form for F0(x). Instead, we will equivalently develop the processes
by utilizing a simple relationship between Pareto and uniform distributions.

Recall that the basic proportional hazard distribution (or CPFD) family has a
density of the form:

f0(x : α) = α(1− x)α−1, 0 < x < 1,

Which is the density of a random variable of the form Y = 1− U1/α

where U ∼ uniform(0, 1).

Note that a Pareto(I)(σ, α) variable X can be represented in the form

X = σU−1/α,

or equivalently

X = σ(1− U)−1/α.

Now, we may define two new Pareto processes as follows:
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(I) A Kundu Pareto process: S∗
n = σ/X∗

n where {X∗
n} is a Kundu PFD process.

i.e.,

S∗
n = σmin{U−1/α

n−1 , U−1/β
n }, (12)

where α, β > 0. For this process we have S∗
n ∼ P (σ, α + β) ∀n. We refer to

Figures 1 for examples of simulated sample paths of steps n = 10 and n = 50.

(a) n = 10. (b) n=50

Figure 1. Sample Path for the Kundu Pareto process

(II) An A-M Pareto process: define

T ∗
−1 ∼ Pareto(I)(σ, α)

and

T ∗
n = σmin{(T ∗

n−1/σ)
−α/(α−δ), U−1/δ

n }. (13)

where 0 < δ < α. For this process we have T ∗
n ∼ P (σ, α).

We refer to Figures 2 for examples of simulated sample paths of steps n = 10 and
n = 50.

(a) n = 10. (b) n=50

Figure 2. Sample Path for an A-M Pareto process

4. Stochastic properties of the CPFD and Pareto processes

4.1. Kundu CPFD process

Theorem 4.1. If the sequence of random variables {V ∗
n } is as defined in equation (8),

then the following statements are true:

(a) For each n, {V ∗
n } has a CPFD(α+ β) distribution.
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(b) The joint distribution function of (V ∗
n−1, V

∗
n ) is

1−(1−vn−1)
α+β−(1−vn)

α+β+(1−vn−1)
α(1−vn)

β min{(1−vn)
α, (1−vn−1)

β}.

(c) {V ∗
n } is a stationary non-Markovian process.

Proof. If V ∗
n is a CPFD process, then V ∗

n = 1 − X∗
n, where X∗

n is a stationary
non-Markovian PFD process (see Arnold et al. [2]). Hence, the stationarity and non-
Markovian nature of V ∗

n follows. To prove part (a) we use the following notation

FV ∗
n
(vn) = P (V ∗

n ≤ v) = P (1−X∗
n ≤ vn)

= P (X∗
n ≥ 1− vn)

= 1− P (X∗
n ≤ 1− vn)

= 1− (1− vn)
α+β (14)

For the proof of Part (b), we refer to V ∗n = 1 −X∗
n and the analogous result for X∗

n

in Arnold et al. [2]. Now, the joint distribution of V ∗
n−1 and V ∗

n ,

FV ∗
n ,V ∗

n−1
(vn, vn−1) = P (V ∗

n ≤ vn, V
∗
n−1 ≤ vn−1)

= P (1−X∗
n ≤ vn, 1−X∗

n−1 ≤ vn−1)

= P (X∗
n ≥ 1− vn, X

∗
n−1 ≥ 1− vn−1)

= 1− FX∗
n−1

(1− vn−1)− FX∗
n
(1− vn) + FX∗

n,X
∗
n−1

(1− vn, 1− vn−1)

= 1− (1− vn−1)
α+β − (1− vn)

α+β + (1− vn)
α

(1− vn−1)
β min{(1− vn)

α, (1− vn−1)
β}. (15)

Corollary 4.2. If the sequence of random variables {V ∗
n } is as defined in equation

(8), then the mean and variance are

E(V ∗
n ) =

1

α+ β + 1
(16)

V ar(V ∗
n ) =

α+ β

(α+ β + 1)2(α+ β + 2)
(17)

Proof. We know that

E(V ∗
n ) = E(1−X∗

n) = 1− E(X∗
n) = 1− α+ β

α+ β + 1
=

1

α+ β + 1
(18)

V ar(V ∗
n ) = V ar(1−X∗

n) = V ar(X∗
n) =

α+ β

(α+ β + 1)2(α+ β + 2)
. (19)

If the sequence of random variables {V ∗
n } is as defined in equation (8), the auto-
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correlation function is

Corr(V ∗
n , V

∗
n−1) =

Cov(V ∗
n , V

∗
n−1)√

V ar(V ∗
n )V ar(X∗

n−1)

=
E(V ∗

n V
∗
n−1)−

(
1

α+β+1

)2
α+β

(α+β+1)2(α+β+2)

(20)

From the usual expression for the auto-correlation in (20), it is evident that the
detail lacking is an expression for E(V ∗

n V
∗
n−1). To evaluate this, we argue as follows

E(V ∗
n V

∗
n−1) = E((1−X∗

n)(1−X∗
n−1))

= E(1−X∗
n−1 −X∗

n +X∗
nX

∗
n−1)

= 1− 2
1

α+ β + 1
+ E(X∗

nX
∗
n−1). (21)

For the computation of E(X∗
nX

∗
n−1) we refer to page 8 of Arnold et al. [2], hence

E(X∗
nX

∗
n−1) = A+B + C +D (22)

where

A =
β2

β + 1

[
1

α+ β + 1
− α

β2 + α2 + αβ + α+ β

]
,

B =

[
α+ β + α2 + β2 + αβ

αβ

]−1

,

C =
βα

(β + 1)(α+ 1)

[
1− β

α+ β + 1
− α

α+ β + 1
+

αβ

α2 + β2 + αβ + α+ β

]
,

D =
α2β

α+ 1

[
1

β2 + α+ αβ
− 1

α2 + β2 + 2α+ αβ

]
.

Theorem 4.3. If the sequence of random variable {V ∗
n } is as defined in equation (8)

then

P (V ∗
1 < V ∗

2 ) =

{
α+β
2α+β if α > β

β
2β+α if α ≤ β.

(23)

Proof. By definition of the process, we have V ∗
1 = 1−X∗

1 and V ∗
2 = 1−X∗

2 .

P (V ∗
1 < V ∗

2 ) = P (1−X∗
1 < 1−X∗

2 ) = P (X∗
1 > X∗

2 ) (24)

So, if α > β we have

P (V ∗
1 < V ∗

2 ) =
α+ β

2α+ β
(25)
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Now, for α < β

P (V ∗
1 > V ∗

2 ) =
α+ β

2β + α
(26)

4.2. A-M CPFD process

Theorem 4.4. If the sequence of random variables {W ∗
n} is as defined in equation

(9), then the following statements are true:

(a) For each n, {W ∗
n} has a CPFD(α) distribution.

(b) The joint distribution function of (W ∗
n−1,W

∗
n) is 1− (1−wn−1)

α − (1−wn)
α +

(1− wn)
δ min{(1− vn)

α−δ, (1− vn−1)
α}.

(c) {W ∗
n} is a stationary Markovian process.

Proof. We use the property that , if {W ∗
n} is an A-M CPFD process W ∗

n = 1 − Y ∗
n ,

where {Y ∗
n } is an A-M PFD process. To prove part (a) we use the following notation

FW ∗
n
(w) = P (W ∗

n ≤ w) = P (1− Y ∗
n ≤ w) = P (Y ∗

n ≥ 1− w) = 1− P (Y ∗
n ≤ 1− w)

= 1− (1− w)δP (Y ∗
n−1 ≤ (1− w)

α−δ

α ) (27)

Hence, using mathematical induction, we have

FW ∗
n
(w) = wα. (28)

Now, for Part (b) of the theorem, the joint distribution of W ∗
n and W ∗

n+1 is, by sta-
tionarity of the process, the same as the joint distribution of W ∗

0 and W ∗
1 which may

be computed as follows:

FW ∗
0 ,W

∗
1
(w0, w1) = P (W ∗

0 ≤ w0,W
∗
1 ≤ w1)

= P (1− Y ∗
0 ≤ w0, 1− Y ∗

1 ≤ w1)

= P (Y ∗
0 ≥ 1− w0, Y

∗
1 ≥ 1− w1)

= 1− FY ∗
0
(1− w0)− FY ∗

1
(1− w1) + FY ∗

0 ,Y ∗
1
(1− w0, 1− w1)

= 1− (1− w0)
α − (1− w1)

α + (1− w1)
δ min{wα

0 , w
α−δ
1 }. (29)

It remains to prove Part (c). Stationarity is trivial from the definition of the process.
For the Markovian property, recall that W ∗

n = 1−Y ∗
n , we know that Y ∗

n is Markovian,
and W ∗

n is an invertible transformation of a Markovian process, hence W ∗
n is also

Markovian.

Corollary 4.5. If the sequence of random variable {W ∗
n} is as defined in equation

(9), then the mean and variance are

E(W ∗
n) =

1

α+ 1
(30)

V ar(W ∗
n) =

α

(α+ 1)2(α+ 2)
. (31)
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Proof. We know that

E(W ∗
n) = E(1− Y ∗

n ) = 1− E(Y ∗
n ) = 1− α

α+ 1
=

1

α+ 1
(32)

V ar(W ∗
n) = V ar(1− Y ∗

n ) = V ar(Y ∗
n ) =

α

(α+ 1)2(α+ 2)
. (33)

If the sequence of random variables {W ∗
n} is as defined in equation (9) then the

auto-correlation function will be

Corr(W ∗
0 ,W

∗
1 ) =

E(W ∗
0W

∗
1 )−

(
1

α+1

)2
α

(α+1)2(α+2)

. (34)

which is monotone in δ.
The only thing needed in order to get the auto-correlation is E(W ∗

0W
∗
1 ). Now,

E(W ∗
0W

∗
1 ) = E((1− Y ∗

0 )(1− Y ∗
1 )) = 1− E(Y ∗

0 )− E(Y ∗
1 ) + E(Y ∗

0 Y
∗
1 )

= 1− 2
1

α+ 1
+

δ

δ + 1

[
α

α+ 1
−

(
1

α
+

δ + 1

α− δ
+ 1

)−1]
+

[
1

α
+

1 + δ

α− δ
+ 1

]−1

.

(35)

For the computation of E(Y ∗
0 Y

∗
1 ), we refer to page 18 of Arnold et al. [2].

Theorem 4.6. If the sequence of random variables {W ∗
n} is as defined in equation

(9) then

P (W ∗
1 < W ∗

1 ) =
δ

α+ δ
. (36)

Proof. By the definition of the process we have W ∗
1 = 1− Y ∗

1 , consequently P (W ∗
1 <

W ∗
1 ) is given by

P (W ∗
1 < W ∗

0 ) = P (1− Y ∗
1 < 1− Y ∗

0 ) = P (Y ∗
1 > Y ∗

0 ) =
δ

α+ δ
(37)

For the computation of P (Y ∗
1 > Y ∗

0 ), we refer to page 19 of Arnold et al. [2].

4.3. Kundu Pareto process

Theorem 4.7. If the sequence of random variables {S∗
n} is as defined in equation

(12), then the following statements are true:

(a) For each n, {S∗
n} has a Pareto(α+ β) distribution.

(b) The joint distribution function of (S∗
n−1, S

∗
n) is

1−
(sn−1

σ

)−(α+β)
−
(sn
σ

)−(α+β)
+
(sn
σ

)−α(sn−1

σ

)−β
min

{(sn
σ

)−α
,
(sn−1

σ

)−β
}
.
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(c) {S∗
n} is a stationary non-Markovian process.

Proof. If S∗
n is a Pareto process, then S∗

n = σ/X∗
n, where X∗

n is a stationary non-
Markovian PFD process (see Arnold et al. [2]). Hence, the stationarity and non-
Markovian nature of S∗

n follows. To prove part (a) we use the following notation

FS∗
n
(sn) = P (S∗

n ≤ sn) = P (σ/X∗
n ≤ sn)

= P (X∗
n ≥ σ/sn)

= 1− P (X∗
n ≤ σ/sn)

= 1−
(sn
σ

)−(α+β)
(38)

For the proof of Part (b), noting that S∗
n = σ/X∗

n, one can refer to the analogous result
for X∗

n in Arnold et al. [2]. Now, the joint distribution of S∗
n−1 and S∗

n,

FS∗
n,S

∗
n−1

(sn, sn−1) = P (S∗
n ≤ sn, S

∗
n−1 ≤ sn−1)

= P (σ/X∗
n ≤ sn, σ/X

∗
n−1 ≤ sn−1)

= P (X∗
n ≥ σ/sn, X

∗
n−1 ≥ σ/sn−1)

= 1− FX∗
n−1

(σ/sn−1)− FX∗
n
(σ/sn) + FX∗

n,X
∗
n−1

(σ/sn, σ/sn−1)

= 1−
(sn−1

σ

)−(α+β)
−
(sn
σ

)−(α+β)
+(sn

σ

)−α(sn−1

σ

)−β
min

{(sn
σ

)−α
,
(sn−1

σ

)−β
}
. (39)

Corollary 4.8. If the sequence of random variables {S∗
n} is as defined in equation

(12), then the mean (for α+ β > 1)and variance (for α+ β > 2) are

E(S∗
n) =

σ(α+ β)

α+ β − 1
(40)

V ar(S∗
n) =

σ2(α+ β)

(α+ β − 1)2(α+ β − 2)
(41)

Proof. We know that

E(S∗
n) = E(σ/X∗

n) = σE(1/X∗
n) = σ

α+ β

α+ β − 1
(42)

V ar(S∗
n) = V ar(σ/X∗

n) = σ2V ar(1/X∗
n) = σ2 α+ β

(α+ β − 1)2(α+ β − 2)
. (43)

If the sequence of random variables {S∗
n} is as defined in equation (12), the auto-
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correlation function is

Corr(S∗
n, S

∗
n−1) =

Cov(S∗
n, S

∗
n−1)√

V ar(S∗
n)V ar(S∗

n−1)

=
E(S∗

nS
∗
n−1)−

(
σ α+β
α+β−1

)2
σ2 α+β

(α+β−1)2(α+β−2)

(44)

From the usual expression for the auto-correlation in (4.7), it is evident that the
detail lacking is an expression for E(S∗

nS
∗
n−1). To evaluate this, we argue as follows

E(S∗
nS

∗
n−1) = E((σ/X∗

n)(σ/X
∗
n−1))

= σ2E(1/X∗
n−11/X

∗
n)

. (45)

For the computation of E(1/X∗
n−11/X

∗
n)

E(1/X∗
n−11/X

∗
n) = E(V −1/βW−1/βI(U < V α/β,W > V β/α))

+E(V −1/βV −1/αI(U < V α/β,W < V β/α))

+E(U−1/αW−1/βI(U > V α/β,W > V β/α))

+E(U−1/αV −1/βI(U > V α/β,W < V β/α))

= A+B + C +D (46)

where

X∗
n = max{U1/α, V 1/β}

X∗
n−1 = max{V 1/α,W 1/β}

and expressions for A, B, C, and D are as follows.

A =

∫ 1

0
dv

∫ vα/β

0
du

∫ 1

vβ/α

dw [v−1/βw−1/β]

=
β2

β − 1

[
1

α+ β − 1
− α

α2 + β2 + αβ − α− β

]
,

B =

∫ 1

0
dv

∫ vα/β

0
du

∫ vβ/α

0
dw [v−1/αv−1/β]

=

[
α2 + β2 + αβ − α− β

αβ

]−1

,
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C =

∫ 1

0
dv

∫ 1

vα/β

du

∫ 1

vβ/α

dw [u−1/αw−1/β]

=
αβ

(β − 1)(α− 1)

[
1− β

α+ β − 1
− α

α+ β − 1
+

αβ

1 + 2αβ − α− β

]
,

D =

∫ 1

0
dv

∫ 1

vα/β

du

∫ vβ/α

0
dw [v−1/αu−1/β]

=
α2

α− 1

[
1

α+ β − 1
− β

α2 + β2 − α− β

]
.

Theorem 4.9. If the sequence of random variable {S∗
n} is as defined in equation (12)

then

P (S∗
1 < S∗

2) =

{
α+β
2α+β if α > β

β
2β+α if α ≤ β.

(47)

Proof. By definition of the process, we have S∗
1 = σ/X∗

1 and S∗
2 = σ/X∗

2 .

P (S∗
1 < S∗

2) = P (σ/X∗
1 < σ/X∗

2 ) = P (X∗
1 > X∗

2 ) (48)

So, if α > β we have

P (S∗
1 < S∗

2) =
α+ β

2α+ β
(49)

Now, for α < β

P (S∗
1 > S∗

2) =
α+ β

2β + α
(50)

4.4. A-M Pareto process

Theorem 4.10. If the sequence of random variables {T ∗
n} is as defined in equation

(13), then the following statements are true:

(a) (a)For each n, {T ∗
n} has a Pareto(σ, α) distribution.

(b) The joint distribution function of (T ∗
n−1, T

∗
n) is

1− (w0/σ)
−α − (w1/σ)

−α + (w1/σ)
−δ min{(w0/σ)

−α, (w1/σ)
−(α/δ)}.

(c) {T ∗
n} is a stationary Markovian process.

13



Proof. We use the property that , if {T ∗
n} is an A-M Pareto process T ∗

n = σ/Y ∗
n ,

where {Y ∗
n } is an A-M PFD process. To prove part (a) we use the following notation

FT ∗
n
(t) = P (T ∗

n ≤ t) = P (σ/Y ∗
n ≤ t) = P (Y ∗

n ≥ σ/t) = 1− P (Y ∗
n ≤ σ/t)

= 1− (σ/t)δP
(
Y ∗
n−1 ≤ (σ/t)

α−δ

α

)
(51)

Hence, using mathematical induction, we have

FT ∗
n
(t) =

( t

σ

)−α
. (52)

Now, for Part (b) of the theorem, the joint distribution of T ∗
n and T ∗

n+1 is, by station-
arity of the process, the same as the joint distribution of T ∗

0 and T ∗
1 which may be

computed as follows:

FT ∗
0 ,T

∗
1
(t0, t1) = P (T ∗

0 ≤ t0, T
∗
1 ≤ t1)

= P (σ/Y ∗
0 ≤ w0, σ/Y

∗
1 ≤ w1)

= P (Y ∗
0 ≥ σ/w0, Y

∗
1 ≥ σ/w1)

= 1− FY ∗
0
(σ/w0)− FY ∗

1
(σ/w1) + FY ∗

0 ,Y ∗
1
(σ/w0, σ/w1)

= 1− (w0/σ)
−α − (w1/σ)

−α + (w1/σ)
−δ min{(w0/σ)

−α, (w1/σ)
−(α−δ)}

. (53)

It remains to prove Part (c). Stationarity is trivial from the definition of the process.
For the Markovian property, recall that T ∗

n = σ/Y ∗
n , we know that Y ∗

n is Marko-
vian, and T ∗

n is an invertible transformation of a Markovian process, hence T ∗
n is also

Markovian.

Corollary 4.11. If the sequence of random variable {T ∗
n} is as defined in equation

(13), then the mean (for α > 1) and variance (for α > 2) are

E(T ∗
n) =

σα

α− 1
(54)

V ar(T ∗
n) =

σ2α

(α− 1)2(α− 2)
. (55)

Proof. We know that

E(T ∗
n) = E(σ/Y ∗

n ) = σE(1/Y ∗
n ) = σ

1

α− 1
(56)

V ar(T ∗
n) = V ar(σ/Y ∗

n ) = σ2V ar(1/Y ∗
n ) = σ2 α

(α− 1)2(α− 2)
. (57)

If the sequence of random variables {T ∗
n} is as defined in equation (13) then the

14



auto-correlation function will be

Corr(T ∗
0 , T

∗
1 ) =

E(T ∗
0 T

∗
1 )−

(
σα
α−1

)2
σ2α

(α−1)2(α−2)

. (58)

which is monotone in δ.
The only thing needed in order to get the auto-correlation is E(T ∗

0 T
∗
1 ). Now,

E(T ∗
0 T

∗
1 ) = E((σ/Y ∗

0 )(σ/Y
∗
1 )) = σ2E((1/Y ∗

0 )(1/Y
∗
1 ))

= σ2E
(
U

−1/α
0 min{(T ∗

0 )
− α

α−δ , U
−1/δ
1 }

)
= σ2E

(
U

−1/α
0 min{(U0)

− 1

α−δ , U
−1/δ
1 }

)
= σ2

∫ 1

0
u
− 1

α

0

[∫ u
δ

α−δ
0

0
u
− 1

α−δ

1 du1

]
du0 + σ2

∫ 1

0
u
− 1

α

0

[∫ 1

u
δ

α−δ
0

u
− 1

δ

0 du1

]
du0

= σ2 αδ

δ − 1

[
1

α− 1
− α− δ

α2 − 2α+ δ

]
+ σ2 α(α− δ)

α2 − 2α+ δ
.

Theorem 4.12. If the sequence of random variables {T ∗
n} is as defined in equation

(13) then

P (T ∗
1 < T ∗

0 ) =
δ

α+ δ
. (59)

Proof. By the definition of the process we have T ∗
1 = σ/Y ∗

1 , consequently P (T ∗
1 < T ∗

0 )
is given by

P (T ∗
1 < T ∗

0 ) = P (σ/Y ∗
1 < σ/Y ∗

0 ) = P (Y ∗
1 > Y ∗

0 ) =
δ

α+ δ
(60)

For the computation of P (Y ∗
1 > Y ∗

0 ), we refer to page 19 of Arnold et al. [2].

5. Statistical Inference

5.1. Estimation

In the following, we use the method of moments to obtain consistent estimators for
the parameters for both of the CPFD processes.

5.1.1. Method of moments

We define the following statistics for the observed sample paths {V ∗
1 , ..., V

∗
m} from the

Kundu CPFD process given in (8).

V̄ ∗ =
1

m

m∑
i=1

V ∗
i (61)

P =
1

m

m∑
i=1

I(V ∗
i < V ∗

i−1). (62)
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where I(.) is the indicator function.

For the Kundu CPFD process in (8) and the expression for P (V ∗
1 < V ∗

2 ) for the
case α > β, the following two moment equations can be solved for estimates of α and
β.

V ∗ =
1

α+ β + 1
(63)

P =
α+ β

2α+ β
. (64)

We obtain the following consistent estimates.

α̂ =
1− V ∗(1 + β̂)

V ∗ (65)

β̂ =
(2P − 1)(1− V ∗)

V ∗P
. (66)

This solution does not always satisfy the condition α > β. Now, for the case α < β
we have

P (V ∗
1 > V ∗

2 ) =
α

2α+ β
.

The following two moment equations can be solved for estimates of α and β.

V ∗ =
1

α+ β + 1
(67)

P =
β

2β + α
. (68)

We can then obtain the following consistent estimates.

β̂ =
(1− V ∗)P

(1− P )V ∗ (69)

α̂ =
β̂(1− 2P )

P
(70)

Now, for the A-M CPFD process in (9) and the expression for P (W ∗
1 < W ∗

2 ), the
following two moment equations can be solved for estimates of α and β.

W ∗ =
1

α+ 1
(71)

P =
δ

α+ δ
. (72)

We obtain the following consistent estimates.

16



α̂ =
1−W ∗

W ∗ (73)

δ̂ =
P (1−W ∗)

W ∗(1− P )
. (74)

For the Kundu Pareto process in (12) and the expression for P (S∗
1 < S∗

2), for the
case, α > β, the following two moment equations can be solved for estimates of α and
β. We also know that a consistent estimator for σ is

σ̂ = S(1) = min{S1, ..., Sm}.

Now, using the following two moment equations

S∗ = σ
α+ β

α+ β − 1
(75)

P =
α+ β

2α+ β
. (76)

We obtain the following consistent estimates.

α̂ =
(1− P )S∗

P (S∗ − σ̂)
(77)

β̂ =
α̂(2P − 1)

1− P
. (78)

Now, for the case α < β, the two moment equations are

S∗ = σ
α+ β

α+ β − 1
(79)

P =
β

2β + α
. (80)

We obtain the following consistent estimates.

α̂ =
S∗(1− 2P )

(1− P )(S∗ − σ̂)
(81)

β̂ =
α̂P

(1− 2P )
. (82)

For an A-M Pareto process in (13) and the expression for P (T ∗
1 < T ∗

2 ), the following
two moment equations can be solved for estimates of α and δ. We also know that
consistent estimator for σ is

σ̂ = S(1) = min{S1, ..., Sm.}
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Now,

T ∗ = σ
α

α− 1
(83)

P =
δ

α+ δ
. (84)

We obtain the following consistent estimates.

δ̂ =
T ∗P

(T ∗ − σ̂)(1− P )
(85)

α̂ =
δ̂(1− P )

P
. (86)

6. Applications

In the following two subsections, we illustrate a simulation study and give examples of
real-life applications of the two CPFD-processes given in (8) and (9) and two Pareto
processes given in (12) and (13).

6.1. Simulation study

For the processes given in equation (8) & (9) and (12)& (13) for the same moment
estimators given in Section 5, we illustrate a simulation procedure on the behavior of
estimators by varying the parameter values with increasing sample path sizes.

We have simulated 2000 data sets of sample path size m = 20, 30, 50, 100, 200, 500
for the parameter vectors (α = 0.5, β = 0.1) for the process in (8) and (α = 1, δ = 0.1)
for the process in (9) . Similarly, for the same number of data sets with the same
varying sample path sizes, we have simulated observations from the process in (12)
for the parameter vectors (σ = 1, α = 1, β = 2) and (σ = 1, α = 4, δ = 2) from the
process in (13) .

We refer to the following Figures 3–6 for the bootstrapped distribution of each
parameter estimate for the processes defined above. The numerical evidence suggests
that as sample size increases, the moment estimates approach the true parameter
values with standard errors that decrease as the sample size increases.

(a) α (b) β

Figure 3. Kundu CPFD process.
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(a) α (b) δ

Figure 4. A-M CPFD process.

(a) α (b) β

(c) σ

Figure 5. Kundu Pareto Process.

6.2. Real-life data

In the following, we consider the S&P data set from 3 January 1928 to 20 February
1928 of size consisting of 34 observations. The data set can be obtained from the
website https://www.kaggle.com/datasets/camnugent/sandp500.

Here, we assume that the data generating process for the S&P data is a proportional
hazard process with unknown marginal distribution F ∗ and underlying CPFD process
of the kind in either (8) or (9). We used a non-parametric approach to estimate 1−F ∗

by using 1 − Fm, the complementary empirical distribution function of the m = 34
available data points of S&P. Now, the transformation 1−Fm applied to the available
S&P data will be approximately a sample from a CPFD process.

We refer to Table 1 and 2 for the fitted parameter values for the two CPFD processes
and the mean square error(MSE) between the complementary empirical distribution
function with the estimated CPFD processes. We can conclude that the AM CPFD
Process (9) fits reasonably well for the data.

For the new Pareto processes, we make similar assumptions but without applying
a distributional transformation to the available data. We refer to Table 3 and 4 for
the fitted parameter values for the two new Pareto processes and the mean square
error(MSE) between the actual S&P data with the estimated Pareto processes. We
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(a) α (b) δ

(c) σ

Figure 6. AM Pareto Process.

can conclude that a Kundu Pareto process ( 12 ) provides a reasonable fit for the data.
Unfortunately, there is no proper goodness of fit measure available to specifically

quantify how well the processes fit the data. The problem of assessing the suitability
of either of the power function process models to a real-world data set will require
further investigation.

Table 1. S&P data fitted

to (8) process

Parameters Estimates

α 0.963
β 0.1203
MSE 0.212

Table 2. S&P data fitted
to (9) process

Parameters Estimates

α 1.083
δ 0.855
MSE 0.155

Table 3. S&P data fitted

to (12) process

Parameters Estimates

σ 16.950
α 7.015
β 26.307
MSE 0.257
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Table 4. S&P data fitted

to (13) process

Parameters Estimates

σ 16.950
α 33.321
δ 37.487
MSE 9.636

7. Conclusion

We have considered two complementary power function distribution processes and two
new Pareto processes, all stationary while some are Markovian. We have derived the
marginal and bivariate distributional properties and included moment computation
up to the auto-correlation function of all of the processes. Since the derived bivariate
distributions do not have densities, likelihood-based inferences such as maximum like-
lihood and the Bayesian approach cannot be used to estimate the process parameters.
However, we have derived one more variation property of each of the processes and
have used it to obtain simple expressions for consistent estimators of the parameters
of the processes. We also included a simulation study of the behavior of the estimators
with varying sample sizes. Finally, we included an example of an application to the
S&P data and illustrated the general procedure to fit such processes. The investiga-
tion of such processes is still at the beginning and will eventually merit a place in the
toolkit of modelers dealing with proportional hazard processes.
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